TRAIN

TO1

Strengthening research, technological development and innovation

The project in numbers
Duration:
30 months
Start date: 25.09.17
End date: 24.03.20
N. Partner: 6
 
Progress
Budget:
1.243.702,22€
Budget FERS:
1.057.146,89€

The project in numbers

Duration: 
30 months
Start / End: 
25.09.17 to 24.03.20
Project progress: 
63%
Budget: 
1243702.22€
Budget FERS: 
1057146.89€

TRAIN

Big Data and disease models: a cross-border platform of validated kits for the biotech industry
Priority Axis 1

Promoting innovation capacities for a more competitive area

Specific Objective: 
OS 1.1.
Investment Priority: 
PI 1b
Typology: 
Standard
Overall Objective of the Project: 

To increase cooperation among key biomedical entities like research institutes, universities and companies, in order to create a service platform based on an innovative combination of two biomedical techniques, cell biology and large-volume data analysis, within the context of cardiological and neuro-inflammatory diseases, problems associated with difficult wounds, and other potential pathologies, thus increasing competitiveness in the biomedical research sector.

Project summary: 

The project tackles the common challenge of the Europe 2020 Strategy for Smart Growth, the Italy-Slovenia Program, and the Smart Specialisation strategies of the three areas, which is to strengthen the synergies among research institutes and companies in order to accelerate innovation through technology transfer between these key entities. The TRAIN project conducts interdisciplinary research studies with new technologies, and the project’s partners consist of 2 leading research institutes, 1 training institution, 1 biomedical SME, and 2 clusters of biotech companies. The aim is to combine the current expertise in biomedicine (Ita) and bio-informatics (Slo) in order to improve the diagnosis and treatment of various diseases, such as myocardial infarction, difficult wounds, and neuro-inflammatory diseases, with the goal of accelerating the technology transfer from the research sector to the industrial sector thanks to the creation of a series of kits available to biomedical companies for developing new biopharmaceutical products. The outputs are as follows: 1) biological and bioinformatical services for the identification of new biomarkers and therapeutic compounds; 2) test tube disease models; 3) validated kits ready for use; 4) technology transfer to biotech companies. The beneficiaries will be SMEs, clinical professionals, students, researchers, patients and healthcare systems. The approach consists of the combination of two scientific fields, the involvement of the SME partner in a case study, and the transfer of the results to companies. The cross-border approach is essential because a greater scientific, economic and social impact can only be achieved through the combination of the complementary forms of expertise found within the program area. The project is innovative because it represents the first time that two distinct areas of research will be brought together to develop ready-to-use kits for professionals operating in the biomedical sector, thereby increasing the potential for marketing and use throughout the cross-border area.

Main results: 

Increased cooperation among biomedical research centres, companies, and clusters operating within the program area through the creation of a lasting cross-border network for the joint development of a technological platform that brings together two distinct disciplines for the first time, with applications in different biomedical fields, including myocardial infarction, difficult wounds, neuro-inflammatory diseases and others; this will improve the knowledge and therefore the competitiveness of the program area in these and other potential health sectors. The increase in cooperation will be evident in the project’s key research and innovation activities, as well as in the transfer of the results; in fact, the planned research requires the scientific excellence offered by the ICGEB and IJS research centres and the Experteam partner company, the ability to capitalise on the results offered by the two clusters located respectively in Slovenia (Ljubljana Technology Park) and Italy (Biovalley), and the experience in the advanced training of researchers and professionals in the biomedical sector offered by the PP MPŠ. The partners have many years of experience in their respective fields, and intend to continue collaborating even beyond the geographical dimension and duration of the project itself, with the aim of becoming a reference group for research and innovation relating to the production of ready to use cell function analysis kits for numerous biomedical and pharmaceutical companies. Combined with the technology transfer activities, the continuation of the network launched by this partnership and extending to the cross-border area will ensure that the research carried out will have a significant impact upon society, thanks to the potential treatments facilitated by its results, as well as on the market, given the global frequency of the target pathologies.

Partner

Lead Partner

International Centre for Genetic Engineering and Biotechnology

Trieste
ITA

Project partner 1

Institut “Jožef Stefan”

Osrednjeslovenska
SLO

Project partner 2

Tehnološki park Ljubljana d.o.o

Osrednjeslovenska
SLO

Project partner 3

Experteam srl

Venezia
ITA

Project partner 4

Biovalley Investments S.p.A.

Trieste
ITA

Project partner 5

Mednarodna podiplomska šola Jožefa Stefana

Osrednjeslovenska
SLO

Documents

Poster evento annuale 30/05/2018Poster evento annuale 30/05/2018
Train_ITA.pdf
( 493 bytes, published on 20 July, 2018 - 13:04 )
Brochure TRAINBrochure TRAIN
TrainBrochure v12-web-compressed.pdf
( 492 bytes, published on 12 November, 2018 - 15:39 )

Objectives and Activities

MAIN OBJECTIVES OF THE PROJECT

The overall objective of the project is to increase cooperation between key biomedical subjects such as research institutes, universities and companies to create a service platform based on an innovative combination of two disciplines, cellular biology and the analysis of large amount of data, in the context of cardiac and inflammatory pathologies, of problems related to difficult wounds and other potential pathologies, thus increasing the innovation and competitiveness in the biomedical research sector.

 

CURRENT SITUATION OF THE PROJECT IMPLEMENTATION (30/05/2018)

The scientific partners are collaborating for the analysis of data generated by high-throughput screening, aimed at identifying compounds capable of modulating cardiac fibrosis. All the partners have started mapping the local companies and institutions that could benefit from the services developed by TRAIN, as well as a pilot project aimed at validating, through cell assays, the presence of contaminating micro-organisms in food products.

 

CURRENT SITUATION OF THE PROJECT IMPLEMENTATION (12/14/2018)

During 2018, research and collaboration activities by scientific partners have been extremely important.
The studies carried out in the lead partner laboratories focused on tests to evaluate the effectiveness of the chemical compounds identified by IJS  capable to modulate the activation of myofibroblasts in cellular models of cardiac and pulmonary fibrosis.
ICGEB has continued the research to produce heart tissue in test tubes, cultivating cardiomyocytes, fibroblasts and endothelial cells. All in hypoxic conditions, to bring the natural situations of a myocardial infarction closer together, which inevitably accompanies a reduction of the oxygen supply to the heart cells.
These experiments have also led to the definition of protocols for the isolation and culture of skin cells, as a difficult wound model on which to study the potential therapeutic effect of pro-angiogenetic compounds, and able to stimulate a greater wound vascularization and therefore to promote healing.

At the same time, ICGEB and IJS elaborated the data of another screening aimed at defining microRNA capable of modulating the proliferation of pulmonary artery smooth muscle cells. IJS has processed the data identifying, for each microRNA, the potential target genes and arriving at the definition of a series of genes that seem to be those most responsible for the proliferation of these cells.

Furthermore, previously optimized assays were validated (proliferation, cell death, oxidative stress and angiogenesis).

Regarding the research of tests for the detection of pathogens present in water and food, Experteam, in collaboration with the ICGEB, carried out research in the laboratory aimed at identifying an economically sustainable scientific protocol. Two paths to date followed, using molecular biology techniques, PCR to amplify DNA sequences and HCA (high content analysis) to view events related to the presence of pathogens. Using a fluorescence microscope, it was possible to monitor the infectious by evaluating the transfer of a particular transcription factor from the cytoplasm to the nucleus of the infected cells.. in parallel, it has been analyzed interferon production by dendritic cells in contact with the infectious agent.. Both methods have not demonstrated the expected accuracy, because a too high bacterial load is required to obtain a positive response. Therefore, the laboratory tests will continue on a third way: the detection of the messenger RNA of pathogens as an indicator of the presence of the infectious agent.

TRAIN was explained by Serena Zacchigna, in its fundamental aspects of the institution, and for the researches developed in 2018, to the specialist communities of the BioHighTech sector (industry, research, training), during the "EURO BioHighTech" event, which was held at the Maritime Station of Trieste on 26 and 27 September.
The project was also represented at the annual event of the cooperation program held in Štanjel on 30 May, and on 26 September in Nova Gorica at the workshop "For a coherent, effective and efficient project communication".
Among the collateral initiatives related to the project we point out the participation as speakers of Luca Braga and Serena Zacchigna of the LP at the Course of "High Process Screening" that took place in Ljubljana, at the Jozef Stefan Institute, on May 25, open to all researchers of the Institute and to the industrial operators of the BioTech sector of Slovenia.
Furthermore, the mapping of Italian and Slovenian companies that are potentially interested in using the scientific results of the project continues.
The foundations were laid for the organization, from 13 to 17 May 2019 in Bled, of a workshop titled "High content imaging and data science for virtual screening and drug discovery". It will be open to students and researchers from the academic and production world. It aims to provide the tools to familiarize with innovative issues such as high-throughput screening, image analysis, chemoinformatics and machine learning.
 

Contacts

International Centre for Genetic Engineering and Biotechnology

0039 04037571
Area Science Park, Padriciano 99, Trieste, Italia
Zacchigna Serena

Institut “Jožef Stefan”

00386 (0) 14773900
Jamova cesta 39, 1000 Ljubljana, Slovenija
Prof. dr. Sašo Džeroski

Tehnološki park Ljubljana d.o.o

00386 (0) 16203490
Tehnološki park 19, 1000 Ljubljana, Slovenija
Mojca Cvirn

Experteam srl

0039 0415093101
Via della Libertà 12, 30175 Venezia, Italia
De Bortoli Angelo

Biovalley Investments S.p.A.

0039 0408992219
Via Flavia 23/1 34148 Trieste TS, Italia
Bravar Diego

Mednarodna podiplomska šola Jožefa Stefana

00386 (0) 14773100
Jamova cesta 39, 1000 Ljubljana, Slovenija
Dr. Dragi Kocev

News

News
Feb 20 2019
Events
Dec 17 2018